Pseudo Primes 57 = (3)(19)
Σ n j=1 (2j - 1) = n2
Σ n j=1 (2j - 1) = (n + 1)2
Σ n j=1 (2j - 1) + (2(n + 1) - 1) = n2 + 2n + 1
n2 + 2n + 2 - 1 = n2 + 2n + 1
n2 + 2n + 1
-1 = -1
√(-1/1) = √(1/-1)
√(-1)/1 = 1/√(-1)
i/1 = 1/i
i2 = 1
i = √(-1)
i2 = -1
i3 = -1 √(-1)
i4 = 1
α, β ∈ Z+
α ≤ β
α ⋅ β ≤ β2
β2 = ε
√(β2) = √( ε)
β = √(ε)
- Diophantine Equations
- Induction
1 = 1 = 12
1 + 3 = 4 = 22
1 + 3 + 5 = 9 = 32
1 + 3 + 5 + 7 = 16 = 42
1 + 3 + 5 + 7 + 9 = 25 = 52
- linear congruence
- quadratic congruence