General | Example 1 | Example 2 | Example 3 (64-bit) | |
1. | choose large p1, p2 ∈ ℙ Must p1 and p2 be distinct? |
p1 = 7 p2 = 11 |
p1 = 61 p2 = 53 |
p1 = 9551156224924043759 p2 = 1870011662606093473 |
2. | μ = (p1)(p2) think "modulus" semi-prime |
μ = (p1)(p2) μ = (7)(11) μ = 77 |
μ = (p1)(p2) μ = (61)(53) μ = 3233 |
μ = (p1)(p2) μ = (9551156224924043759)(1870011662606093473) μ = 17860773531980750341058100301096285007 0x 0D6FDC1F9F46BD9E53C526E77D23F34F |
3. | φ(μ) In order to determine this number, you have to know the factorization of μ. |
φ(μ) = φ(77) φ(μ) = 60 |
φ(μ) = φ(3233) φ(μ) = 3120 |
φ(μ) = φ(17860773531980750341058100301096285007) φ(μ) = 17860773531980750329636932413566147776 0x 0D6FDC1F9F46BD9DB5450338F4CEDCC0 |
4. |
pick any ε where:
(1) 1 < ε < φ(μ)
(2) gcd(ε, φ(μ)) = 1 must be coprime
|
1 < ε = 17 < 60 | 1 < ε = 17 < 3120 | 17860773531980750329636932413566147776 (2^64 - 3) 0x FFFFFFFFFFFFFFFD |
5. | Public Key: μ, ε | μ = 77 ε = 17 |
μ = 3233 ε = 17 |
μ = 17860773531980750341058100301096285007 ε = 18446744073709551613 |
6. | δε ≡ 1 (mod φ(μ)) Find the modular multiplicative inverse |
(δ)(17) ≡ 1 (mod 60) | (δ)(17) ≡ 1 (mod 3120) | (δ)(18446744073709551613) ≡ 1 (mod 17860773531980750329636932413566147776) 0x 083D3D2D32E2C3E2A62486350E458155 |
7. | Private Key: δ | δ = 53 | δ = 2753 | δ = 10951794882651480131062190390917824853 |